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The scattering of water waves by a varying bottom topography is considered using 
two-dimensional linear water-wave theory. A new approach is adopted in which the 
problem is first transformed into a uniform strip resulting in a variable free-surface 
boundary condition. This is then approximated by a finite number of sections on 
which the free-surface boundary condition is assumed to be constant. A transition 
matrix theory is developed which is used to relate the wave amplitudes at fm.  The 
method is checked against examples for which the solution is known, or which can 
be computed by alternative means. Results show that the method provides a simple 
accurate technique for scattering problems of this type. 

1. Introduction 
The problem of determining the scattering of a long-crested gravity wave over a 

bottom of arbitrary shape has received considerable attention in the literature. For a 
survey up to 1960 see Wehausen & Laitone (1960, p.525ff). Despite the simplification 
afforded by linearization of the free-surface condition, there appears to be only one 
explicit solution for a particular bottom shape. This solution, due to Roseau (1976), 
provides an explicit representation for the two-dimensional velocity potential of the 
field produced by a time-harmonic plane wave incident upon an underwater bottom 
topography having a smooth variation, in the direction of wave propagation only, 
from one constant depth to another. 

For general bottom topographies numerical methods are available. For geometries 
where the depths at either side tend asymptotically to the same value, a solution can 
be obtained by utilizing the Green’s function for a time-harmonic wave source in 
finite depth. Application of Green’s theorem provides a Fredholm integral equation 
for the unknown velocity potential over the non-constant part of the bottom profile 
whilst a separate integral representation provides the potential at an arbitrary point in 
the fluid region in terms of the potential on this bottom profile. Despite the simplicity 
of this formulation the authors are not aware of any calculations using this method 
for a given bottom profile, although the method has been used in a corresponding 
acoustic problem to derive frequencies of trapped modes over an arbitrary obstacle 
in an acoustic waveguide (Linton & Evans 1992). 

Of more interest, and more difficulty, is the problem of the bottom profile joining 
regions of diflerent constant depths, since this corresponds to waves propagating over, 
for instance, a continental shelf of a given shape. The numerical technique described 
above is no longer available because of the difference in depths. This would need to 
be modified by using a Green’s function appropriate to this case and again deriving 
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an integral equation over the variable part of the bottom profile. Such a function has 
been developed (Evans 1972) for precisely this purpose, but its complicated nature 
makes the numerical procedure unwieldy. 

Recently boundary element methods have been used by several authors in connec- 
tion with problems of wave propagation over arbitrary topographies. The complicated 
wave source discussed above is replaced by the simpler free-space Green’s function, 
resulting in an integral equation for the unknown potential over the free surface and 
bottom. For example, Nachbin & Papanicolaou (1992a) have used the method to 
consider the propagation of waves in shallow water over a random topography of 
arbitrary shape and slope. For the case of scattering by a bottom profile joining 
two regions of unequal depth, a hybrid method can be used in which the velocity 
potentials in the constant-depth regions on either side of the variable-depth region are 
represented analytically using appropriate eigenfunction expansions with unknown 
coefficients. For reviews of these ideas see Yeung (1975) and Liu & Liggett (1982). 
The advantage of using a simpler Green’s function has to be balanced against the 
need to discretize over extended boundaries. Nevertheless the method has been used 
to good effect and has enabled nonlinear as well as linear wave problems to be 
solved, including for example the propagation of solitary waves towards a beach from 
a region of constant depth (Kim, Liu & Liggett 1983). More recently Chamberlain 
(1993) has used the mild-slope equation to solve a number of scattering problems for 
a variety of bottom profiles. 

The simplest scattering problem where the depths on either side of the obstacle 
are different is the propagation of waves over a vertical step. This was considered 
by Miles (1967) using eigenfunction expansions in each of the separate regions of 
constant depth. By matching the potential and its first derivative across the common 
boundary, he was able to characterize the propagating waves on either side of the 
step in terms of the unknown horizontal velocity across the step which in turn was 
expressed as the solution of a singular integral equation of the first kind. By invoking 
a variational approximation he was able to obtain accurate results in good agreement, 
over a range of incident wavelengths, with the work of Newman (1965) who had 
considered the same problem when one of the depths was infinitely large. Mei & 
Black (1969) used Miles’ method to determine the scattering of a plane wave by a 
rectangular block on the bottom, by first exploiting symmetry. 

Newman also considered the problem when the bottom profile joining regions 
of constant depth contains a long region also of (different) constant depth, and 
derives expressions for the reflection and transmission coefficients in terms of the 
corresponding coefficients for a plane wave incident on a bottom profile which is 
semi-infinite in extent. Ideas based on both Newman (1965) and Miles (1967) will 
play a key role in the present work. 

Fitz-Gerald (1976) considers an arbitrary bottom profile in two dimensions and 
exploits complex-variable techniques to map the two-dimensional fluid regions into 
an infinite strip at the expense of a more complicated free-surface condition. This 
enables him to reduce the problem to the solution of an integro-differential equation 
from which he is able to prove uniqueness of the problem for general bottom profiles 
in the limits of wavelength either large or small compared to the transition width 
joining the unequal constant depths. He then develops an elaborate numerical scheme 
for solving for the reflection coefficient which gives fair agreement with the work of 
Mei & Black (1969) on rectangular bottom profiles. He also provides results for a 
range of profiles all of which have known conformal mappings transforming the fluid 
region into an infinite strip. 
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Hamilton (1977) also uses a conformal mapping which maps a general bottom 
profile in two dimensions into a strip so as to remove the possibilities of the depth 
function being non-analytic. In this way he is able to develop nonlinear long-wave 
equations whose zeroth-order approximation is much improved over a conventional 
treatment involving the actual bottom profile and which provides remarkably accurate 
results even for abrupt bottom topographies. The mapping technique has been used 
more recently by Nachbin & Papanicolaou (1992b) in studying the reflection of waves 
in shallow channels by rapidly varying bottom topographies. 

The main idea behind the present work stems from a paper by Devillard, Dunlop & 
Souillard (1988) who, in extending the ideas of Anderson localization to water waves 
over random bottom profiles, have devised a transition matrix method for a class of 
arbitrary bottom shapes to solve the full linear reflection and transmission problem. 
They make two approximations to achieve this end. First they restrict the topographies 
that can be studied by assuming that the bottom profile can be discretized into a series 
of horizontal steps each of which has a horizontal length which is large compared to 
the local wavelength above it. This enables them to regard the local evanescent field 
generated at one shelf as negligible by the time it reaches the next. This wide-spacing 
approximation is effectively that used by Newman (1965) described above, and has 
been used by numerous authors in the water-wave context to good effect. See for 
example Evans (1990) and Martin (1984). Their second approximation is to utilize 
Miles’ (1967) variational approximation to relate the propagating waves on either 
side of the shelf through an appropriate 2 x 2 transition matrix. This enables them 
to obtain the cumulative effect of all the steps on the reflection and transmission 
of an incident wave by multiplication of the transition matrices appropriate to each 
individual shelf. The idea has recently been taken up by OHare & Davies (1992) who 
have shown that the method works well even when the transition matrix is simplified 
still further by using a plane-wave approximation for scattering at a step, suggested by 
Miles (1967). They use the method to consider the reflection by a series of sinusoidal 
bottom profiles and they are able to reproduce accurately the high reflection due to 
B r a g  resonance when the wavelength is twice the wavelength of the bottom profile. 
Their results suggest that the method of Devillard et al. may have wider validity than 
expected. The use of stepped profiles to approximate general smooth bottom profiles 
has also been considered by Johnson (1990) in connection with the low-frequency 
scattering of Kelvin waves. 

In the present paper we shall show how the idea of Devillard et al. (1988) can be 
adapted to deal with bottom profiles which are neither smooth nor low, in the sense 
that the horizontal extent of the corresponding discretized steps modelling the profile 
are large compared to the height of the steps. The idea is first to map the fluid regions 
into an infinite strip as described by Fitz-Gerald (1976) or Hamilton (1977) thereby 
transferring the difficulty associated with the variable geometry to one involving a 
variable boundary condition on the free surface. A discretization technique akin to 
that of Devillard et al. is then applied. 

The advantages of performing this transformation are twofold. First, as explained 
by Hamilton, the effect of the mapping is to transform the equation of the bottom 
profile into a surface condition which varies more slowly with the horizontal co- 
ordinate. As an extreme example, a bottom profile consisting of an infinitely thin 
vertical barrier is transformed into a symmetric variable surface condition having a 
profile with a continuously varying tangent (Hamilton 1977, Figure 5). Because of the 
smoothing which has taken place we anticipate greater accuracy when discretizing this 
variable free-surface condition into piecewise constant sections than when discretizing 
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the bottom profile directly. 
There is however a much more important advantage in discretizing the free-surface 

condition rather than the bottom condition. Whereas Devillard et al. need the 
solution over a shelf given by Miles, which is expressed only approximately either in 
terms of a plane-wave or a variational approximation, the discretization of the free- 
surface condition requires the solution in a strip of constant width for the reflection 
and transmission of a wave incident from a semi-infinite region supporting waves of 
one wavenumber into a semi-infinite region supporting waves of a slightly different 
wavenumber. This problem has an explicit simple solution using the Wiener-Hopf 
technique which has been given by Weitz & Keller (1950) who were concerned 
with modelling the propagation of waves into a region containing small pieces of 
floating ice which had the effect of modifying the free-surface condition. Equipped 
with this exact solution, which is rederived using a residue calculus method in an 
Appendix, we can, as in Devillard et al. (1988) construct a series of transition 
matrices carrying information about the propagating waves across the region of 
varying surface condition. Here too we shall assume the effect of the local evanescent 
modes from one junction is negligible at the next. The method is a natural extension 
to two dimensions of the idea of discretizing a one-dimensional wave equation having 
variable wavenumber and utilizing a sequence of transition matrices to obtain overall 
transmission and reflection properties. A good description is provided by Levine 
(1978, p.123). The only difference is that in the one-dimensional case the solution 
over each step of the discretization is exact and the process can be confidently expected 
to converge to the true solution as the size of each step is decreased, whereas the 
present application requires neglect of certain evanescent modes and we can be less 
confident of convergence to the true solution. 

The plan of the paper is as follows. In $2 a derivation is given of the transition 
matrix linking the progressive waves in two semi-infinite regions supporting waves 
of different wavenumbers. The derivation is entirely general at this stage since it is 
relevant to other situations also. For example, the different wavenumbers in each 
region might be due to the change in surface boundary condition arising from the 
mapping of the bottom profile as described above, or it might be due to a change in 
depth in passing over a shelf as in the original Miles (1967) paper. Again the governing 
equation could be the Helmholtz equation so that the difference in wavenumbers arose 
from a step change in an acoustic waveguide or from a sudden change in boundary 
conditions on the walls of a uniform guide. 

In deriving the transition matrix, use is made of general reciprocity conditions 
linking the left and right reflection and transmission coefficients so that the transition 
matrix reduces finally to the product of four separate 2 x 2 matrices: three rotation 
matrices involving ‘angles’ related to the relative size of the particular shelf, and the 
phases of a left and right reflection coefficient, and a matrix involving the modulus 
of a left reflection coefficient and the ratio of successive wavenumbers. 

Some examples of the application of the method are described in $3. In particular 
it is shown how the formulation of Devillard et al. can be retrieved. 

In $ 4  we introduce our new technique for the solution of wave propagation over an 
arbitrary bottom topography in two dimensions. It is shown how the problem can be 
reduced to a problem in a uniform strip with a variable free-surface condition. This 
new problem is then discretized, and the transition matrix formulation of $ 2  applied, 
resulting in a simple scheme for the determination of the reflection and transmission 
coefficients. 

In $ 5  the method is applied to the explicit simple solution derived by Roseau 
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(1976) when the bottom profile joins smoothly two regions of unequal depth. A 
comparison is made between the Devillard approach and the discretized free-surface 
approach and it is shown that in this case the latter is superior in approximating 
the exact answer for the modulus of the reflection coefficient. Two other examples, 
where solutions can be computed using alternative methods, are used to validate the 
method. These are the scattering of waves by a single vertical step, and by a vertical 
barrier attached to the sea bed and extending part way to the free surface. In each 
case the transition matrix method proves to be simpler to implement compared to 
eigenfunction expansion methods, and also produces accurate results. The submerged 
barrier problem, which cannot be tackled by the method of Devillard et al., and 
which requires many terms in an eigenfunction expansion approach, is a particularly 
severe test of the present method, yet good accuracy is achieved. 

2. Transition matrix formulation 
In this section we shall be concerned with wave propagation in a two-dimensional 

region described by coordinates x, y, in which waves of wavenumber ki exist for 
all x with x < xi (> xi), where ki # ki+l. The difference in wavenumber could arise, 
for example, from a sudden change in the constant width of the region defined by the 
coordinate y, or in a sudden change in the boundary condition on y = 0, in each case 
as x passes through xi. Two distinct types of solution can be considered describing 
waves incident from either x = -m or x = +co and being partially reflected and 
partially transmitted at x = Xi. 

Thus in the first case, for x -+ -a we may write 

4 ( ~ ,  y) - (eikix + Rie-"tx)Xi(y), (2.1 ) 
whilst as x 4 +a 

For the latter case, as x --* -m 
4(x,y) - TieY'+'' Xi+ 1 (Y 1. 

~ ( x ,  y) .v tie-'ix (2.3) 
whilst as x 4 +m 

(2.4) 
Here X i  is an appropriate eigenfunction for the governing equation and boundary 
conditions satisfying 

~ ( x ,  y) .v (e++lX + rieik'+lx)Xi+l(y). 

where L is the width of the region, which may be constant for all x or may change 
abruptly from one constant value to another as x passes through xi. The quantities 
Ri,ri and Ti,ti are the reflection and transmission coefficients for the problem. Owing 
to the normalization condition (2.5), these may not correspond to the usual definitions 
of such coefficients. 

Provided 4, w both satisfy either Laplace's equation, or a Helmholtz or modified 
Helmholtz equation, and on the infinite boundaries of the region both 4 and y satisfy 
the same conditions which may be Neumann, Dirichlet or a mixed condition, then it 
follows from Green's second identity that 
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where C is a closed contour bounding the region. It is clear that the only contribution 
to this integral arises from the lines x = kX, X large, where the forms (2.1) to (2.4) 
apply. 

It follows from (2.6) by direct calculation, that 

aiti = Ti, (2.7) 

where ai = ki/ki+l. Further relations are obtained by choosing 4 and $, y~ and ip, and 
4 and iJ in turn, in place of 4, IQ in (2.6). In this way it can be shown that 

2 2 (1 - lril = ailti1 
and 

where a bar denotes complex conjugate. 
ori&< + CTi = 0, 

It follows immediately from (2.7t(2.10) that 

lltl = lril, (2.11) 

Titi - R,r; = T;/T = ti/K 
and 

&/ti = -ri/F. 
For later use, we define real quantities pi, Bi, Oi by 

- 

rie2&i+lxt = pje2i0, 

(2.12) 

(2.13) 

(2.14) 

and 

h.e-2kixi = -pie2iei (2.15) 
0 < pi < 1, which takes into account the fact that the reflection coefficients are with 
respect to the point x = xi .  It follows from equations (2.13) to (2.15) that we may 
define 

where 
ti = Ziei(ei+ei)e-i(kitl-k,)xi 9 (2.16) 

T i  = [(I - p f ) / ~ ~ ] l / ~ .  (2.17) 

@(x, y) - (Aieikix + Bie-'ix)Xi(y) as x -, -a, (2.18) 

and that 

@(x, y) - (Ai+le'i+lx + B .  1+1 e-'itlx )Xi+l(y) as x -+ +a, (2.19) 
and the values of Ai+l, Bi+l can be related to Ai, Bi through the original particular 
solutions 4 and IQ. 

Thus we write 

We can generalize these particular two solutions by assuming that 

and note that two special solutions are obtained by choosing 

(2.20) 

(2.21) (i) Ai = 1, Bi = &., Ai+l = Ti, Bi+l = 0, 
(i i)  Ai = 0, Bi = t i ,  Ai+l = ri, Bi+l = 1. 
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Using these as column vectors in (2.20) gives 

whence 

(2.22) 

(2.23) 

where (2.12) and (2.13) have been used. 

Thus we can write 
An alternative expression for Si can be obtained if use is made of (2.14) and (2.16). 

from whence it follows that 

(2.25) 

(2.26) 

ai = +'\Y; = -i(Aie*iXi - Bie-*ixi). (2.27) 
Note that, apart from the variation in y ,  !Pi is the far-field potential in x < xi  
evaluated at x = x i ,  whilst Yi+l is the far-field potential in x > xi evaluated at 
x = xi+l. Note also that these definitions differ from the corresponding ones given in 
Devillard et al. (1988) and O'Hare & Davies (1992) by the factor ~~(0). After some 
algebra, it can be shown, starting from (2.25), that 

say, where 
cosb -sin6 
sin6 cosb Ra= ( 

is a rotation matrix, 

and 
4 = ki+l(xi+l - xi) ,  

(2.28) 

(2.29) 

(2.30) 

(2.31) 

which depends solely on the magnitude of the reflection and transmission coefficients 
for a wave incident from x > xi .  Using (2.17) we obtain an alternative form for this 
matrix: 

where 

(2.32) 

(2.33) 

Equation (2.28) relates the values of the potential and its derivative at the junction 
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point xi with the corresponding values at the next junction point xi+l. Implicit in the 
derivation of (2.28) is the assumption that any local evanescent wave field existing in 
the vicinity of xi is negligible in its effect at xi+] .  With this assumption, (2.28) can 
be used repeatedly to connect N regions of different constant wavenumbers through 
a single 2 x 2 matrix flkN-lPi made up from matrices Mi and Rei, Rei related to 
the amplitude and phase respectively of the reflection and transmission coefficients 
for waves incident upon a single junction at x = xi, and from matrices Rgi which 
measure the size of each region of constant wavelength. Note that, in contrast to Si 
in (2.20), the 2 x 2 matrices relating !Pi and its derivative to Yi+l in (2.28), are all 
real. Equation (2.28) is a new result and applies generally whenever there is a change 
in wavenumber at each point x i  from ki to ki+l for whatever reason. 

In the next section we shall consider specific examples of this idea in one or two 
space dimensions. 

3. Examples 
A stretched string of variable density 

As a first example we consider the case of a stretched string of tension T and of 
variable density p ( x )  whose displacement u(x ,  t) = Re{v(x)e-'"'} is described by 

-a3 < x < ao, d2v 
dx2 
- + k Z ( X ) U  = 0, 

where k ( x )  = ~ ( p ( x ) / T ) ' / ~ .  This problem is one-dimensional but the theory of $2 is 
applicable if the eigenfunctions x j ( y )  are chosen to be unity. Let k ( x )  be discretized 
by 

k ( x )  = ki, Xi-1 < x < x ~ ,  i = 1 , 2  ,..., N+1,  (3.2) 
where xo and xN+l are used to represent -a and +ao respectively. In order to apply 
the theory in 3 2, we require the reflection properties across a single junction xi at 
which point the wavenumber changes from ki to ki+l. These are easily obtained by 
matching u and v' at x = xi ,  whence Re, = Rei = I ,  the identity matrix, 

and 

We can now obtain an approximate solution for the scattering by an arbitrary k2(x)  
by repeated use of (3.4) to obtain the overall scattering properties in terms of products 
of 2 x 2 matrices. The above procedure for such one-dimensional problems has been 
discussed by many authors including Levine (1978). The method is particularly suited 
to the determination of the eigenvalues or vibrational frequencies of afinite string 
for general k2(x) .  For example, successive use of (3.4) to model a finite string by 
N - 1 separate regions on each of which k ( x )  is assumed constant relates the values 
of !Pi, Qi at either end of the string in terms of a 2 x 2 matrix. Then the condition of 
vanishing displacement at both ends is !PI = !PN = 0 which in turn requires the top 
right-hand element of this matrix to vanish. It is this requirement which determines 
the eigenvalues. Computations for specific k ( x )  for which the eigenvalues are known 
suggest that accurate approximations can be obtained by taking N 2 100. 
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The result (3.4) for the infinite string agrees with that developed by Levine (1978) 
using a slightly different notation. Levine shows that as N is increased indefinitely 
the original equation (3.1) is recovered showing that the method will yield the exact 
result in this limit. 

Linear shallow water waves over an arbitrary bottom topography 
Another one-dimensional example is provided by the propagation of linear shal- 
low water waves over an arbitrary bottom topography. The surface displacement 
Re{u(x)eciut} of such waves satisfies (Lamb 1932, 0 185) 

dx ( h ( x ) $ )  + k2u = 0, (3.5) 

where k2 = 02 /g  and h(x) is the shape of the bottom topography assumed to be 
constant in the z-direction. 

Explicit solutions of (3.5) exist for special h(x) only. Discretization of h(x)  leads to 
wavenumbers ki, where 

k; = k2/h(xi)  for xi-l < x < xi,  (3-6) 
and i = 1,2,. . . , N, say. In order to apply (2.28) we need pi, Bi, Oi for a change from 
ki to ki+l at x = xi, in this case corresponding to a change in depth from hi = h(xi) to 
hi+l = h(xi+l). After applying continuity of displacement and mass flux across x = xi, 
we obtain pi = (ki  - ki+l) / (ki  + ki+l), Oi = Oi = 0 so that again Re, = Ret = I ,  but 
now 

The method now proceeds as before with x,(y)  again equal to unity. 

form (3.1) but there appears little advantage in doing this. 
It should be noted that equation (3.5) can be transformed into an equation of the 

Reflection of water waves by an arbitrary bottom topography 
This application was first considered by Devillard et al. (1988) in connection with 
extending ideas on Anderson localization to water waves. The smoothly varying 
topography is replaced by a series of horizontal shelves above each of which prop- 
agating waves exist, having wavelength based on the local water depth. The result 
(2.28) is directly applicable to this case. However, in order to exploit the method use- 
fully a further approximation is necessary to estimate the required values of pi, @, @, 
which are determined from the scattering of an incident wave at a single vertical 
step at x = xi. Devillard et al. utilize a variational approximation to these scattering 
coefficients developed by Miles (1967). OHare & Davies (1992), by comparing both 
this approximation and a simpler plane-wave approximation with a full numerical 
solution obtained from including up to ten non-propagating modes, conclude that 
good agreement is obtained for small changes of depth relative to the overall depth, 
even when the horizontal length of each shelf is also small. The result (2.28) is shown 
in Appendix A to be in complete agreement with Devillard et al. once the appropriate 
variational or plane-wave approximation is used. This problem is considered using a 
new approach in the next section. 

Acoustic waveguides with variable boundary conditions 
As a further illustration of the technique we consider a two-dimensional acoustical 
waveguide of width 2d, on whose boundaries ( y  = +d, -00 < x < 00) a variable 
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impedance condition depending on x is satisfied. Such conditions have been assumed 
in modelling the effect of various liners in absorbing sound as it travels down the 
duct. See for example Namba & Fukushige (1980). Thus it is assumed that the 
time-harmonic displacement or pressure satisfies 

4 y  - K ( x ) 4  = 0, y = f d , - m  < x < a, (3.8) 

whilst for IyI d d, -co < x < co, 

4 x x  + 4 y y  + k 2 4  = 0. (3.9) 

Here k = w/c, where c is the speed of sound. The only requirement on K ( x )  is 
that when replaced by its discretized equivalent, Ki = K(xi ) ,  Xi-1 < x < xi, resulting 
solutions of (3.9) admit wavenumbers +_ki supporting just a single travelling wave in 
each region Xi-1 < x < Xi. 

The advantage of the above method applied to this problem is that the fundamental 
problem, the reflection and transmission of acoustic waves at ajunction xi in an infinite 
strip at which the wavenumber changes from ki to ki+l, has an exact explicit solution, 
which can be derived using the Wiener-Hopf technique. This is in contrast to the 
previous example where the fundamental problem was the reflection and transmission 
across a shelf which does not have an exact, explicit solution, so that a further 
approximation is involved in using the technique for general bottom topographies. 

The details of the acoustic problem will not be addressed here but will be considered 
in a later paper. However the advantages of working with explicit solutions in 
constant-width strips prompts us to reconsider the water-wave problem and seek to 
improve on the approach of Devillard et al. (1988). This is our main application of 
the transition matrix method and, since it forms the substance of this paper, merits a 
section to itself. 

4. Reflection over an arbitrary profile using intermediate mapping functions 
The essential idea of this section is first to follow the method of Fitz-Gerald 

(1976) to map the two-dimensional fluid region bounded by the mean free surface 
and the arbitrary bottom topography into a strip of constant width. Of course 
the disadvantage of this approach is that the usual linearized free-surface condition 
relating the potential and its normal derivative is replaced by a variable condition 
depending on the position along the strip. However, if this variable condition is 
discretized, so as to apply (2.28), it turns out that the problem which needs to be 
solved, namely the reflection at a junction xi joining two semi-infinite strips supporting 
different wavenumbers, has an exact analytical solution which has been derived using 
the Wiener-Hopf technique by Weitz & Keller (1950). See also Keller & Weitz 
(1953). Furthermore the transformation appears to convert rapid changes in depth 
to smoother variations in the free-surface condition which enables a wider range of 
bottom topographies, even discontinuities, to be considered (see Hamilton 1977). 

We follow the notation of Fitz-Gerald closely. Thus we choose Cartesian coordi- 
nates x, y with y vertically upwards. Then the well-known equations governing linear 
time-harmonic water waves are described by a velocity potential 

(4.1) 

(4.2) 

@(x, y, t )  = Re{4(x, y)e-io'} 

satisfying 

4xx + 4 y y  = 0, -a2 < x < co,-b(x) < y <o, 
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4 y  + m 4 x  = 0, Y = -W), (4.3) 

4 y  - K 4  = 0, y = 0. (4.4) 
Here b(x) is the arbitrary bottom shape non-dimensionalized with respect to a 

depth h and K = 0 2 h / g .  We assume without loss of generality, that 

where e E (0,1], and also that b’(x) + 0, 1x1 + 00. For large values of x we assume 

X + -00, cosh k-(y  + 1) (eik-x + Ee-ik-x), 
4(4 Y) - cosh k- 

whilst 

Here 
K = k- tanh k- = k+ tanh k+e 

and k* are real and positive. The quantities g and are the usual reflection and 
transmission coefficients in water wave problems, defined to be the ratio of the 
amplitudes of the reflected and transmitted waves respectively to that of the incident 
wave. 

There is no loss in generality in assuming transmission into the shallow region. The 
corresponding reflection and transmission coefficients for transmission from shallow 
to deep water can be obtained from (2.7) and (2.9). 

We now map the strip D : -00 < x < 00, -b(x)  < y < 0 in the z(= x + iy) 
plane into the strip 9 : -m < 5 < 00, -1 < q < 0 of the [(= 5 + iq) plane using 
a conformal mapping z = Q ( [ )  so that the points at infinity correspond, the c-axis 
maps to the free surface y = 0 and the line q = -1 maps on to the bottom profile 
y = -b(x).  It will be assumed that 

so that the far-field behaviour of the transformed potential ~ ( 5 ,  q )  = 4(x, y), where 
x + iy = Q(5 + iq), is 

where 

Also y satisfies 
K- = k-, K+ = Ek+. 

(4.11) 

(4.12) 

Wce + W V V  = 0, -00 < c < 0O,-l< q < 0, (4.13) 

Wq = 0, q = -1, (4.14) 

vq - KN5)W = 0, q = 0, (4.15) 
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(4.16) 

Fitz-Gerald (1976) discusses methods for the determination of suitable approxi- 
mations to h ( [ )  for given bottom profiles b(x)  as well as giving many examples of 
particular profiles. For the present we shall assume h ( ( )  (> 0) is known and we shall 
discretize it in the form 

Ki = KNti), t i - 1 < { < & , i = 1 , 2  ,..., N, (4.17) 

so that the free-surface boundary condition is 

KiV - ~q = 0, ti-1 < t < ti, (4.18) 

which permits a travelling wave of wavenumber ki where, from (4.13), (4.14) and 
(4.181, 

Ki = ki tanhki (4.19) 
defines ki and, from (2.5), 

xi(q)  = 2k;I2(2ki + sinh 2ki)-l12 cosh ki(q + 1). (4.20) 

The endpoints to, (N are such that h(&) k: 1 and h(&) k: e, the asymptotic values of 
h(5). Then use of (2.28) relates YN, 5 2 ~  to YO, 00 through the 2 x 2 matrix n",,-, Pi. 
The canonical problem here is the solution of (4.13), (4.14) and 

(4.21) 

which has been considered by Weitz & Keller (1950) using the Wiener-Hopf technique. 
It is shown in Appendix B, using the simpler residue calculus method described by 
Mittra & Lee (1971) that, in the notation of 9 2, 

(4.22) 

(4.23) 

(4.24) 

where a;, j = i, i + 1, are the real positive roots of 

Kj+ajntanajn =o. (4.25) 

The reflection and transmission coefficents can now be obtained in the following 
way. With pi, Oi, Oi given by (4.22)-(4.24), Pi, i = 0,. . . , N - 1 can be determined and 
Y N , ~ ~ N  related to Y0,520. This can easily be converted into a relationship between 
AN, BN and Ao, Bc, by noting that, from (2.26) and (2.27), with (i replacing xi, 

(4.26) 

Finally  AN+^, B N + ~  are related to AN, BN through an application of (2.20) with i = N. 
We can thus compute the elements c,, of a 2 x 2 matrix C such that 

(4.27) 
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It can easily be shown that detC = K - / K + .  Putting A0 = 1, BO = R,  AN+^ = T ,  
BN+I = 0 shows that 

R = -CZ~C;;, T = K-(K+C& (4.28) 

The quantities E and T are readily shown to be related to R and T by 

E = R  (4.29) 

sinh 7rfl-l (k- - &+) 
sinh nfi-l(k- + ek+) 

- 
T = T -  

cosh K+ (1 + sinh 2 ~ - / 2 ~ - ) ’ / ~  
cosh K- (1 + sinh 2 ~ + / 2 ~ + ) ~ / ~  ’ 

’ 

(4.30) 

It should be pointed out that one can proceed directly to (4.27) by repeated 
application of (2.20) without requiring the introduction of the variables !Pi and 
Oi. This method does have the advantage of computational simplicity. However, 
as pointed out by Devillard et al. (1988) and O’Hare & Davies (1992), the !Pi,Oi 
variables have more physical meaning, and also the formulation in terms of (2.28) 
is more elegant and it is easier to see the effects of the various contributions due 
to the width of the regions and the reflection and transmission coefficients for each 
canonical problem. 

5. Results 
Roseau’s explicit solution 

The only known explicit solution for the reflection coeffcient (RI is that due to Roseau 
(1976) who considered a smooth monotonic transition from constant depth 1 to depth 
e. In the present notation, he used the mapping function 

z = Q(C) = C + p-l(e - l) ln(l  + gl), 

h(5 )  = (1 + eeflt)/(l+ $ 5 ) .  

(5.1) 

where p E (O,n/2), to map the fluid region into a strip of width 1, when the function 
h becomes 

(5.2) 
The parameter p allows for variations in the lengthscale of the transition from one 
depth to the other, see Fitz-Gerald (1976). Thus as + n/2 the bottom profile 
becomes steeper whereas as /3 + 0 the ‘transition width’ becomes infinite. In the 
physical plane the bottom is described by the cume 

p x = l n p + $ ( e -  l ) l n [ l+2pcos~+p2] ,  (5.3) 
where 

p = I(sin B - 1 cos PI-’, 1 = tanv(y + 1)/(1 - e)]. (5.4) 
Roseau was then able to solve the resulting boundary-value problem in the strip 

with the variable boundary condition (4.15) with h given by (5.2) by solving an 
equivalent functional difference equation. A re-working and extension of the method 
is given in Evans (1985). He obtained the explicit form 

(5.5) 

where k* satisfy (4.8). The transmission coefficient, 
(2.8) and (4.30). 

can then be computed from 

As a first test of the theory developed in 9 2 we shall discretize the surface condition 
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K,E,B = 1,051 0.1 ,O. 1J.5 0.1,o. 1,o. 1 - 
N (El F I  I 4  IF1 IKI IT1 
10 0.1561 1.0336 0.4729 1.5318 0.3939 1.5980 
20 0.0060 1.0464 0.4776 1.5274 0.1932 1.7057 
50 0.0072 1.0464 0.4789 1.5261 0.0019 1.7385 
100 0.0073 1.0464 0.4791 1.5259 0.0019 1.7385 

Exact 0.0073 1.0464 0.4792 1.5258 0.0018 1.7385 

Devillard 0.0096 1.0463 0.4788 1.5262 0.0057 1.7385 
TABLE 1. Comparison with the exact solution of Roseau and the method of Devillard et d. 

(5.2) as described in §4. In this example, and throughout this section, we shall only 
use equal spacing, i.e. ti+l - ti will be kept constant. For any particular application 
this is unlikely to be the most efficient choice. However, as we shall see, it is perfectly 
adequate and has the merit of great simplicity. Thus for a given K ,  e and f i  we 
must choose N, t o  and <N. In this case we take (0 = -[N and choose 50 such that 
~ K o  - KI -= lop6. This condition ensures that spurious reflections do not occur near 
the endpoints, but of course does mean, given the choice of equal spacing, that in 
situations where the transition width is very wide, large values of N will be required 
even though the slope of the bottom profile is very mild. For computational purposes, 
it is also necessary to truncate the infinite sums (4.23) and (4.24) but it was found 
that only very few terms were required. In the calculations below 10 terms were used. 

To fix ideas we consider three specific examples, namely ( K , e , @ )  = (1,0.5, l), 
(O.l,O.l,lS) and (O.l,O.l,O.l). The results are shown in table 1. In the first example 
the parameters are chosen to have fairly moderate values, whereas in the other two 
examples the waves are chosen to be very long so as to maximize the effect of the 
bottom topography. In the second example the transition width is very small whilst 
in the final example it is extremely large. The values of rN chosen to ensure that the 
difference between KO and K is less than are approximately 6.6, 3.8 and 57.0 
respectively. 

A comparison of our results with the method of Devillard et al. (1988) is also 
shown in table 1. The form of the bottom profile as given by equations (5.3) and (5.4) 
is not convenient for discretization in x and so in this case discretization in equal 
intervals of y has been carried out. The convergence characteristics of the Devillard 
approach do not appear to be as good as those for our method. It was found, 
by trial and error, that satisfactory numerical results could be obtained by using a 
discretization parameter of N = 200 and taking 40 terms in the sum (A4). 

The table clearly demonstrates the power of the intermediate mapping function 
method. 

The single step 
Fitz-Gerald ( 1976) gives a mapping function corresponding to ‘mounds superimposed 
on steps’ which constitutes another family of bottom profiles with different constant 
depths at x = foo. A special case of this mapping which can be used to provide 
further validity to our method is that of a single step. If the depths at -oo and +a 
are again 1 and e respectively, the function h is given by 

h ( t )  = (1 + c2ent)’ /2/(1 + enC)l/’. (5.6) 
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K,e = 1,o.s 1,O.l 0.1,o. 1 
I - - 

N lEl IT1 lEl IT1 IRI rm 
10 0.0629 1.0443 0.3816 1.3054 0.5042 1.5013 
20 0.1091 1.0411 0.4016 1.2934 0.5090 1.4964 
50 0.1208 1.0387 0.4168 1.2838 0.5101 1.4953 
100 0.1223 1.0385 0.4192 1.2823 0.5103 1.4951 

Eigenfunction 0.1 113 1.0399 0.4132 1.2861 0.5098 1.4956 
Variational 0.1205 1.0388 0.4196 1.2820 0.5104 1.4950 
Plane-wave 0.0859 1.0425 0.3454 1.3254 0.5039 1.5016 

TABLE 2. Reflection by a single step 

Reflection and transmission coefficients calculated using the intermediate mapping 
technique, using the same truncation parameters as for the Roseau profiles, are shown 
in table 2 for the three different pairs of values of K and E .  For comparison, values 
computed using three alternative methods are also shown. These are the method 
of matched eigenfunction expansions together with the variational method and the 
plane-wave approximation due to Miles (1967). None of the results in the table 
can be considered exact, but provided sufficiently large truncation sizes are used the 
matched eigenfunction method should be capable of arbitrary accuracy. In the table 
a truncation parameter of N = 80 was used. Tests with higher values of N show that 
these results are accurate to at least 3 decimal places and owing to the nature of the 
variational approximation (here 80 terms were taken in the infinite sums computed, 
see Appendix A) the exact answer will lie between the result from the eigenfunction 
method and that from the variational method. 

Again the table shows clearly how accurate values for the reflection and trans- 
mission coefficients can be obtained with very little computational effort using our 
technique. 

The vertical barrier 
In both of the previous examples the method of Devillard et al. can be used - the 
single step is of course a trivial application. Our final example is of a case that is 
not amenable to their treatment, that of a vertical barrier attached to the sea bed, 
extending part way to the free surface. In infinitely deep water this problem has an 
explicit soluion due to Ursell (1947) who showed that 

(5.7) JTJ  = do(Kb)[n2Zi(Kb) + Ki(Kb)]”2, 

where b is the size of the gap above the barrier. 
In finite water depth no such explicit solution is possible. Recently however R. 

Porter (1994, personal communication) has obtained extremely accurate complemen- 
tary bounds for JR( and 1 TI by using expansions in Tchebyshev polynomials for either 
the horizontal velocity across the gap or the jump in potential across the barrier, 
each of which appears as an unknown in a singular integral equation arising from an 
approach using matched eigenfunction expansions. 

The geometry of the vertical barrier is a special case of a family of bottom profiles 
termed ‘plateaus’ by Fitz-Gerald (1976). If the water depth is 1 everywhere and the 
barrier has height a (< 1) then the function h is given by 

(5.8) h(<) = cos(na/2)[1- sin2(na/2) tanh2(<a/2)]’/*. 
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K , a  = 1,OS 0.1,0.5 1,0.9 
- - 

N IRI 171 IRI IF1 IEI IF1 
10 0.1370 0.9906 0.0672 0.9977 0.5560 0.8312 
20 0.1475 0.9891 0.0677 0.9977 0.5916 0.8063 
50 0.1523 0.9883 0.0679 0.9977 0.6028 0.7979 
100 0.1529 0.9882 0.0679 0.9977 0.6042 0.7968 

Porter 0.1533 0.9882 0.0680 0.9977 0.6054 0.7959 

TABLE 3. Reflection by a vertical barrier 

Discretization of this function and application of our transition matrix method 
provides results which are compared with Porter’s ‘exact’ numerical results in table 3. 
Again excellent agreement is obtained. 

6. Conclusions 
We have presented a new method for the determination of the reflection and 

transmission coefficients for the two-dimensional problem of the scattering of an 
incident wave of small amplitude by a varying bottom topography. The first step 
of the method is to transform the fluid region into a strip of constant width and 
so in order for the technique to be useful a mapping must be found to perform 
this transformation. A number of such functions, suitable for a variety of families 
of bottom profiles, are given in Fitz-Gerald (1976) who also addresses the general 
problem of finding a mapping function which approximates to a given bottom 
topography. For example, by replacing 5 by pr ,  p E (0,1] in the step and barrier 
cases described in the previous section he shows how a class of smooth bottom 
shapes can be generated which approach the step or barrier as f l  -+ 1. A good 
general discussion on conformal mappings, including how to round off corners in 
Schwarz-Christoffel mappings is given in Henrici (1974). Once such a mapping has 
been found the method provides a very efficient technique for the evaluation of the 
reflection and transmission coefficients. 

The fundamental idea behind our approach is to discretize the resulting boundary- 
value problem in the strip into a finite number of sections, each of which has constant 
boundary conditions on its boundaries. The idea of using discretization techniques to 
solve the water-wave scattering problem is not knew, recent work having been done 
on this topic by Devillard et al. (1988) and OHare & Davies (1992). The approach 
used in their papers is to discretize the fluid domain into regions each of which has 
constant depth. Such a technique has the advantage that it is applicable to a wider 
class of geometries - since no mapping has to be found - but has the disadvantage 
that the canonical problem that must be solved for each region is the scattering by a 
single vertical step, for which no exact analytical solution exists. On the other hand an 
exact analytic solution to the canonical problem that arises when the boundary-value 
problem in the strip is discretized does exist. It is also worth noting that there are 
geometries which can be mapped into a strip for which the method of Devillard et 
al. cannot be used, the simplest of which is the vertical barrier considered in 0 5. 

As a first step in the development of our new technique, we have formulated a 
transition matrix approach, applicable to a wide class of problems where the domain 
can be discretized into regions each supporting waves of a different wavenumber. We 
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have applied this method to a number of alternative problems, both one- and two- 
dimensional. Such problems include not only problems of reflection and transmission 
but also that of the determination of natural frequencies of vibration. 

For the water-wave reflection problem, we have validated our method by comparing 
it with the only known explicit solution, due to Roseau (1976), and with two other 
examples where the reflection and transmission coefficients can be computed using 
alternative means. In all cases it was found that our intermediate mapping technique 
gave extremely accurate results with minimal computer effort. 

Both the discretized bottom profile method due to Devillard et al. and the in- 
termediate mapping and discretized free-surface condition method used here require 
the neglect of the evanescent modes from one junction to the next, and the validity 
of this approximation as the number of discretizations increases or as the bottom 
profile becomes steeper is open to question. Thus, according to a referee, although the 
Devillard method works surprisingly well for the sinusoidal bottom profile considered 
by O’Hare & Davies (1992) it does not work for any rapidly varying bottom profiles. 
It is clear that much work needs to be done on both methods to investigate the 
precise conditions on the bottom profile or free-surface condition under which the 
neglect of the evanescent modes leads to an accurate approximation as the num- 
ber of discretizations increases. Nevertheless the success of the present method in 
predicting IT1 for the extreme case of a submerged vertical barrier or sharp spike 
extending upwards from the bottom, for which the Devillard method fails completely, 
suggests that the method is capable of predicting accurate values of JTI even for the 
most rapidly varying profiles, and is presumably less sensitive to the neglect of the 
evanescent modes. 

The work of C.M.L. was supported in part by SERC under grant GR/F/83969 

Appendix A. The formulation of Devillard et al. 
Consider the scattering of a surface wave, incident from x = +co, by a step at 

x = xi. For x < xi (> x i )  the depth of water is taken to be hi (hi+*). No exact 
solution exists to this problem, but approximations to the reflection and transmission 
coefficients, ri and ti, can be obtained using the variational formulation described in 
Miles (1967). 

The following notation will be used. Where < (>) appears as a subscript or 
superscript it represents i if hi < hi+l (hi > hi+l) and i + 1 if hi+l < hi (hi+l > hi). The 
reflection and transmission coefficients are given by 

ei(ki-ki+l )xi 2iki+1cx-1 
ti = 

kiki+l + icX-l(ki+lcJ + kic-J) 

Here 
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00 

16k, (a; sin a,’lhi+l - hi1)2 . 
X =  (A 4) 2k.A + sinh 2k<h, ,=I (2a,>h, + sin 2a,>h,)(k: + a,>2) ’ 

a,‘ and a,’ are the real positive roots of 

and 

The quantities pi, Bi and Qi are easily calculated from (A 1) and (A2), and if these 
are substituted into (2.28) we obtain 

This is equivalent to the form quoted by Devillard et al. (1988), taking into account 
the slightly different definitions of !Pi and Qi that we have used. O’Hare & Davies 
(1992) also use the plane-wave approximation discussed by Miles (1967). This is 
equivalent to setting X = 0 in the above formula. 

Appendix B. The residue calculus method applied to the reflection and 
transmission of water waves by a change in free-surface boundary condition 

We wish to solve (4.13), (4.14) and (4.21) together with appropriate radiation 
conditions. For a number of reasons the notation of the main text is not convenient 
for this task and so in this Appendix we will use a different notation. We will solve 
the following boundary-value problem: 

4xx + 4 y y  = 0, -00 < x < 00, -1 < y < 0, (B 1) 
4 y  = 0, -00 < x < 00, y = -1, (B 2) 

K1w - w y  = 0, x < 5 ,  Y = o ,  (B 3) 
K2lV - w y  = 0, x > L  y = O ,  (B 4) 

and we will assume that a wave is incident from x = -00. 

This problem has been considered (for 5 = 0) by Weitz & Keller (1950) and Keller 
& Weitz (1953) in connection with the reflection and transmission of water waves by 
floating ice. In fact they solve the more general problem where the equation to be 
satisfied in the fluid is a modified Helmholtz equation rather than Laplace’s equation. 
The method they employ is the Wiener-Hopf technique. However, a solution to (B 1)- 
(B 4) can be obtained in a much simpler manner by using the residue calculus method 
described by Mittra & Lee (1971). In fact Mittra & Lee (p.65 example 2-8) give an 
outline solution to a similar more general problem with an impedance condition also 
on y = -1 for all x, but where the governing equation is the Helmholtz equation. 

We begin by defining the orthonormal eigenfunctions 

w!,”(y) = NA1) cos k,(y + l), l&’(y) = ivp cos K,(y + l), n=0,1,  ..., (B5) 

where 

iv!,’) = UC;/~(UC, + sin 2k,)-’I2, N!,~) = 2 ~ ; ’ / ~ ( 2 ~ ,  + sin 2rcn)-’l2. (B 6) 

Here k,, K, ,  n 2 1 are the real positive roots of k, tan k,+K1 = 0 and K, tan K , + K ~  = 0 
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respectively, whilst k0 = -ik, KO = -iK, k and K being the real, positive roots of 
k tanh k = K1 and K tanh K = K2. 

In x < 5 (> 5 )  we set $ = (44, where 

n=O 
m 

n=O 

for some unknown coefficients A,, and B,. The reflection and transmission coefficients 
R and T are then related to A0 and Bo through 

R = Aoeike, T = BOe-iKt. (B 9) 

Matching C#J and ab/dx at x = 5,  using the orthogonality of the depth eigenfunctions 
and then eliminating the coefficients A,, leads to the infinite system of equations 

a, 

= A6&, m = 0 , 1 ,  ..., 
n=O 

where 

and 

Consider 

dz, 
I = - /  1 

27ri c- z -k, 
where f(z) has simple poles at z = K,,, n = 0,1, .  . ., simple zeros at z = k,, n = 1,2,. . ., 
and f(z) = 0(1~1-’ /~)  as IzI -+ 00 on CN. Here CN is a sequence of circles whose radius 
RN increases without bound as N + 00 whilst avoiding the zeros of the integrand. 
The conditions on f(z) are sufficient to ensure that I, -+ 0 as N + 00. If we further 
assume that f(h) = -1 we obtain 

from which it follows that 

V, = A Rescf; K,,). 
A suitable function f is given by 

It follows from (B9), (B 11) and (B 15) that 

2kP ( K - k)ei(k--)ot 

( K 2  - Kl)Nf)Nh2’ cosh k cosh K ’  
T =  
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where 
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(1 + iK/k,,)( 1 + ik/u,) 
n= I (1 + iK/Kfl)(l + ik/k,)' 

P = n  

In order to obtain R we return to the matching conditions on x = <. These can be 
combined to give 

Consider now 

dz, 

with f(z) as before. Cauchy's residue theorem now gives, for m = 0, 

Comparison with (B 19) then shows that 

where 
m 

o = c {tan-' (d) - tan-' (t) } 
n=l 

We can now express T in a much neater form than (B 17). Using (2.8) and (B22) it is 
clear that IT1 = 2k/(k + K), and the phase of T is just the phase of P exp{i(k - K)<}. 
It is not difficult to show that 

(B 24) p / p  = e-2i(e+e), 
- 

where 
m 

8 = c {tan-' (2 )  - tan-' (;) } . 
fl=l 

Thus 

Equations (4.22)-(4.24) then follow. 
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